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We study theoretically electronic Mach-Zehnder interferometers built from integer quantum-Hall-edge
states, showing that the results of recent experiments can be understood in terms of multiparticle interference
effects. These experiments probe the visibility of Aharonov-Bohm �AB� oscillations in differential conductance
as an interferometer is driven out of equilibrium by an applied bias, finding a lobe pattern in visibility as a
function of voltage. We calculate the dependence on voltage of the visibility and the phase of AB oscillations
at zero temperature, taking into account long-range interactions between electrons in the same edge for inter-
ferometers operating at a filling fraction �=1. We obtain an exact solution via bosonization for models in
which electrons interact only when they are inside the interferometer. This solution is nonperturbative in the
tunneling probabilities at quantum-point contacts. The results match observations in considerable detail pro-
vided the transparency of the incoming contact is close to one-half: the variation in visibility with bias voltage
consists of a series of lobes of decreasing amplitude and the phase of the AB fringes is practically constant
inside the lobes but jumps by � at the minima of the visibility. We discuss in addition the consequences of
approximations made in other recent treatments of this problem. We also formulate perturbation theory in the
interaction strength and use this to study the importance of interactions that are not internal to the
interferometer.
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I. INTRODUCTION

Recent experiments1–10 on electronic Mach-Zehnder inter-
ferometers �MZIs� constructed from integer quantum-Hall-
edge states have attracted a great deal of attention. In these
experiments Aharonov-Bohm �AB� oscillations are observed
in the differential conductance of the interferometer. The
most striking results concern behavior at finite bias voltage.
The visibility of AB oscillations shows a series of lobes as a
function of voltage while their phase is independent of bias,
except near visibility minima where it changes sharply by �.
Our concern in this paper is with the theoretical understand-
ing of these experiments.

The observations are interesting from several perspec-
tives. First, as was quickly appreciated,2 it is plausible that
the effects arise from electron-electron interactions, because
behavior of this kind does not occur in a single-particle
model. In addition, more seems to be required than a simple
treatment in which inelastic scattering leads only to decoher-
ence since approaches of that kind cannot produce multiple
side lobes in visibility of AB oscillations with increasing
bias. It is remarkable that electron interactions should have
the distinctive signatures found in this system since integer
quantum-Hall-edge states are usually modeled in the low-
energy limit as a chiral Fermi gas of independent particles.11

The experiments therefore appear to reflect interaction phys-
ics that is not captured by the standard, universal description,
but is robust enough to appear in many devices of varying
designs. A second reason for interest stems from current
efforts12–20 to study interferometry in fractional quantum-
Hall states as a probe of fractional or non-Abelian quasipar-
ticle statistics. Against that background it is clearly important
to understand unexpected interaction effects in much simpler,
integer quantum-Hall systems. A third reason for interest is

that the phenomenon seems to be an example of coherent
many-body physics in a quantum system far from equilib-
rium. It invites comparison with other nonequilibrium quan-
tum problems, from the Kondo effect21 to cold atomic
gases.22

The design of an experimental device working as an MZI
is shown in Fig. 1. It uses the edge states of a two-
dimensional electron gas that is in an integer quantum-Hall
plateau. �Most experiments have been done at filling factor
�=2 but broadly similar results have also been reported at
�=1�. The edge states serve as electron waveguides and are
coupled at quantum point contacts �QPCs�, which act as
beam splitters. Current between, for example, source S1 and
drain D2 is measured as a function of the voltage difference
applied between sources S1 and S2. Interference fringes are
observed as oscillations in the differential conductance either
when the magnetic-flux density is varied by a small amount
or when a side gate is used to change the interferometer area
or arm lengths. The visibility and phase of these oscillations
vary with voltage in the fashion already summarized. A
physical scale is set by the bias voltage at which the first
minimum in visibility occurs: the measured value, about
14 �V in the first experiment,2 corresponds roughly to the
chemical potential increase required to add one electron to an
edge state with length equal to that of the interferometer
arms: for arm length d and edge velocity vF, this chemical
potential increase is �vF /d.

Theoretical studies of coherence in electronic MZIs
started before these experiments. Early work treated dephas-
ing arising from a variety of possible sources: interactions
within the interferometer;23 a fluctuating classical field;24,25

voltage probes;26 or coupling to an external quantum bath.27

None of these approaches generates the subsequently ob-
served lobe pattern in the dependence of visibility on bias
voltage. A further calculation,28 based on a microscopic treat-
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ment of the effects of long-range interactions and using
bosonization combined with a perturbative treatment of tun-
neling at the QPCs, shows that nonmonotonic variations in
visibility can appear for weakly coupled edge states, but
without capturing the features found experimentally. By con-
trast, studies of models with additional structure, involving
either a counterpropagating edge mode29 or the pair of edge
modes that arise at filling factor �=2,30 show that resonances
can appear in that setting, which lead to lobes in visibility
similar to those observed. These results are encouraging but
�as we discuss in Sec. VIII� the models involved seem to us
insufficiently generic to account for all experiments. More
recently, approximate treatments of the effects of interactions
at �=1 when edges are strongly coupled by QPCs have gen-
erated some of the behavior found experimentally.31–33 There
is good reason to think that these calculations identify some
of the relevant physics but the approximations used are non-
standard and their domain of validity is unclear.

In this paper we set out a detailed treatment of interaction
effects in MZIs at filling factor �=1. The approach is micro-
scopic in the sense that it is based on the standard Hamil-
tonian for quantum-Hall-edge states11 and does not involve
external noise. Our main results come from the exact solu-
tion of models which have one simplifying feature: interac-
tions that are restricted to the interior of the MZI; a short
account of this part of our work has been presented
previously.34 We also present work in three further direc-
tions. One of these is an elementary solution of the two-
particle problem, which is a simplification of ideas from Ref.
33. We believe that this calculation provides a useful illus-
tration of the essential physics behind the phenomena we are
concerned with, which is multiparticle interference. A second
direction is a careful analysis of the approximations involved
in Ref. 32. The third direction is the formulation of pertur-
bation theory in interaction strength, which allows us to as-
sess the importance of interactions that extend beyond the
interior of the MZI.

The organization of rest of the paper is as follows. The
two-particle problem is addressed in Sec. II and the general
microscopic description of the MZI is set out in Sec. III. In
Sec. IV we show how models with interactions only in the
interior of the interferometer can be solved exactly. In Sec. V
we use this approach to study interferometers with various

interaction potentials. We present an extended discussion of
Ref. 32 in Sec. VI and develop perturbation theory in inter-
action strength in Sec. VII. We summarize our conclusions in
Sec. VIII. Some technical details of the calculations are
given in appendices.

II. TWO-PARTICLE PROBLEM

In this section we set out a pedagogical treatment of the
two-particle problem that illustrates how electron interac-
tions affect the visibility of AB oscillations in an MZI. We
consider an interferometer having both arms of the same
length d and a propagation velocity vF for electrons. Denot-
ing their separation by s, the flight time during which both
are inside the interferometer is �= �d−s� /vF. We take the two
electrons to interact with a potential energy U when both are
inside the MZI on the same edge but not to interact other-
wise. For simplicity, we consider first the case in which the
magnitudes of the transmission amplitudes at the two QPCs
are ta= tb=1 /�2, giving results for the general case later.

We solve the scattering problem for an initial state in
which both particles are positioned on the upper channel
before the first contact. We evaluate the probability for one
or both particles to exit the interferometer in the lower chan-
nel by summing all quantum-mechanical amplitudes that
connect the initial state to a given final state. We regard the
expectation value for the total charge transferred from the
upper channel to the lower channel as the analog for the
two-particle problem of the current in the many-body,
steady-state case.

To establish some notation, consider in the first instance
single-particle scattering, initially for one QPC and then for
an MZI. Amplitudes for the four scattering processes at one
QPC are shown in Fig. 2, and the two possible paths through
an MZI between an initial state in the upper channel and a
final state in the lower channel are shown in Fig. 3. The
amplitudes associated with these two paths are given by
products of the amplitudes arising at each QPC. Taking the
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FIG. 1. Schematic view of the electronic Mach-Zehnder inter-
ferometer, which consists of a Hall bar with an island in it. A two-
dimensional electron gas in a quantum-Hall plateau occupies the
shaded region. One edge state propagates along the lower edge of
the Hall bar, from source S1 to drain D1, and a second edge state
propagates around the island, from source S2 to drain D2. Tunnel-
ing between these two edge states takes place at two quantum point
contacts, with amplitudes ta and tb, at the points indicated by dashed
lines.
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FIG. 2. �Color online� Possible paths and associated scattering
amplitudes at a single QPC with transmission probability 1/2. The
phase � of the transmission amplitude is unimportant for a single
QPC but contributes to the AB phase in an MZI.
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total current to be proportional to the transition probability
between the upper and lower channels, one obtains the stan-
dard result given in the caption to Fig. 3, with oscillations in
the current as a function of the AB phase �.

Now consider the two-particle problem with an initial
state as described, in which both particles are on the upper
channel. Paths to a final state with both particles in the lower
channel are shown in Fig. 4 and those to a final state with
one particle in each channel in Fig. 5. �Because there is no
dispersion, particles cannot exchange positions in the scatter-
ing process. They may therefore be treated as if they were
distinguishable and this is reflected in the figures by the use
of different colors for the paths of each particle.� Without
interactions the amplitude for a given pair of paths would

simply be a product of contributions for each particle. Inter-
actions contribute additional phase factors e−iU�/� when both
particles propagate on the same channel inside the interfer-
ometer. The average charge transferred between the upper
and lower channels in the scattering process is

I = 2�A2�2 + 2�A1�2 = 1 + cos�U�/��cos � , �1�

where both terms are multiplied by factors of two since A2
describes two-particle transmission while single-particle
transmission with amplitude A1 can occur for either particle.
AB oscillations are represented in this expression by the term
in cos �. Their strength is modulated by the factor
cos�U� /��. We can take the interaction strength U to play the
same role in the two-particle problem as bias voltage in the
many-body system since increasing bias leads to reduced
spatial separation between electrons entering the MZI above
a filled Fermi sea, which in turn increases the interaction
energy between these electrons.

The phenomenon can be summarized by defining the vis-
ibility of AB oscillations. Let Imax and Imin be the maximum
and minimum values of I as � varies. The visibility is

V =
Imax − Imin

Imax + Imin
. �2�

From Eq. �1� we have V= �cos�U� /��� and hence a lobe pat-
tern in V as a function of U. It is also evident from Eq. �1�
that the phase of AB oscillations changes abruptly by � at
zeros of V.

We use the same approach to calculate the current for the
case of arbitrary tunneling amplitudes ta , tb at the QPCs.
The result for the average charge transferred is

I = 2�TaRb + RaTb + 2�TaTbRaRb�1/2

	 �1 − 4�TaRa�sin2�U�/���1/2 cos �̃� , �3�

where Ta,b=1−Ra,b= ta,b
2 is the tunneling probability. The

phase of AB oscillations is shifted by interactions, being

Φ
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FIG. 3. �Color online� Possible paths and associated amplitudes
for a single particle to propagate through an MZI from an initial
state on the upper channel to a final state on the lower channel. The
phase difference �=
−� is the AB phase arising from enclosed
flux. The combined amplitude A for transitions between these states
is the sum of contributions from the two paths:
A=−ie−i��+
�/2 cos�� /2�. The total current is proportional to �A�2

= 1
2 �1+cos ��.
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FIG. 4. �Color online� The four possible paths and associated
amplitudes for two particles to propagate through an MZI from an
initial state with both particles on the upper channel to a final state
with both particles on the lower channel. The combined amplitude
is A2=− 1

2e−i��+
��1+e−iU�/� cos ��.
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FIG. 5. �Color online� As in Fig. 4 but with one particle on the
lower channel in the final state. The combined amplitude is A1

=− 1
2e−i�e−iU�/� sin �.
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�̃ = � + arccos��1 − 4�TaRa�sin2�U�/���−1/2 cos�U�/��� .

�4�

The visibility is

V = V0 	 �1 − 4�TaRa�sin2�U�/���1/2, �5�

where V0 is the single-particle value

V0 =
2�TaTbRaRb�1/2

TaRb + RaTb
. �6�

An important difference between these results and the
ones for the many-body problem that we present in Sec. V is
that here V does not decay at large U. In other respects,
however, the two-body problem is illuminating. In particular,
while the behavior of V is not affected by the value of Tb
except for a multiplicative factor, if Ta�1 /2 the zeros of the
visibility turn into finite minima and the jumps in the phase
of AB oscillations become smooth rises. In the limit that
transmission at the first QPQ approaches Ta=1 or Ta=0,
modulations of V with U disappear altogether. These features
are also present in the many-body problem. One conse-
quence is that the lobe pattern cannot be obtained at leading
order from a calculation that is perturbative in tunneling.

III. MICROSCOPIC MODEL OF THE MZI

Our model for the MZI is sketched in Fig. 6. The Hamil-
tonian is

Ĥ = Ĥkin + Ĥtun + Ĥint. �7�

It has three contributions: Ĥkin is the single-particle term for

an isolated edge; Ĥint represents electron-electron interac-

tions; and Ĥtun=Ĥtun
a +Ĥtun

b describes tunneling at the QPCs
labeled a and b. We consider initially edge channels of
length L with periodic boundary conditions, then take L
→�. Allowed wave vectors are k=2�nk /L with nk integer.
Fermionic operators ĉk�

+ and ĉk�, which create and annihilate
an electron with momentum k on the edge �, obey standard
anticommutation relations �ĉk� , ĉp��

+ �=kp���. In coordinate

representation the field operator �̂��x�, which annihilates an
electron at position x on the edge �, is

�̂��x� =
1
�L

	
k=−�

�

ĉk�eikx. �8�

With this notation

Ĥkin = − i�vF 	
�=1,2



−L/2

L/2

�̂�
+�x��x�̂��x�dx . �9�

We represent interactions within each edge using the same
symmetric potential U�x ,x�� and neglect interactions be-
tween electrons in different edges. Introducing the density

operator �̂��x�= �̂�
+�x��̂��x�, we then have

Ĥint =
1

2 	
�=1,2



−L/2

L/2

U�x,x���̂��x��̂��x��dxdx�. �10�

Finally, taking the QPCs to be pointlike, we write

Ĥtun
a = vaei��̂1

+�0��̂2�0� + H.c., �11�

Ĥtun
b = vbei
�̂1

+�d1��̂2�d2� + H.c. �12�

Here va and vb are tunneling strengths, from which the quan-
tum amplitudes ta and tb can be calculated. As in the previous
section, the AB phase due to enclosed flux is �=
−�.

This model can be solved exactly when interactions occur
only between pairs of electrons that are both inside the inter-
ferometer, in the region denoted II in Fig. 6. We present
results in Sec. V calculated using three different choices for
such internal interactions. The first of these is simply a
charging energy

U�x,x�� = �g 0 � x,x� � d

0 otherwise.
� �13�

An interaction of this kind is standard in the theory of quan-
tum dots and for an MZI was treated approximately in Ref.
32. To test the robustness of behavior to changes in the form
of interaction, we also obtain results for two types of inter-
action potential that vary with electron separation inside the
interferometer, taking

U�x,x�� = �U�x − x�� 0 � x,x� � d

0 otherwise
� �14�

and either an exponential dependence

U�x − x�� = ge−��x−x�� �15�

or a Coulomb form

U�x − x�� =
gc

��x − x��2 + ac
2

. �16�

IV. EXACT SOLUTION

In this section we give a full account of the solution out-
lined previously in Ref. 34. We study the interferometer at
finite bias voltage by computing the quantum-mechanical
time evolution of an initial state in which the single-particle

ta tb

d2

d1

µ2

µ1

I II III

FIG. 6. Schematic view of the MZI. Horizontal lines represent
edge states with propagation direction indicated by arrows. These
edge states are connected by two QPCs, shown as vertical dashed
lines, with tunneling amplitudes ta and tb. The arm lengths between
contacts are d1 and d2, and the chemical potentials in the incident
channels are �1 and �2. The three different regions of the interfer-
ometer discussed in the text are labeled using Roman numerals.
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levels of Ĥkin for the two edges are occupied up to different
chemical potentials, �1 and �2. The interferometer reaches a
steady state at long times and we evaluate observables in this
state. The challenge of the calculation comes from the diffi-
culty of treating both tunneling and interactions nonperturba-
tively. Each part of the problem can be described by a qua-
dratic Hamiltonian but the appropriate variables are different
in the two cases: fermionic for tunneling and bosonic for
interactions. A model which has only internal interactions
can be solved exactly because in these circumstances the
effects of tunneling at QPCs and of interactions can be
handled separately. In the following we consider only edge
states at filling factor �=1 and an initial state at zero tem-
perature but both these restrictions could be lifted within the
approach.

To treat time evolution we use the interaction representa-
tion, taking as the free part of the Hamiltonian

Ĥ0 = Ĥkin + Ĥint �17�

and as the “interaction” part Ĥtun. In this representation the
time evolution of the fermion operators is given by

�̂��x,t� = eiĤ0t/��̂��x�e−iĤ0t/�. �18�

The wave function of the system, which we denote at t=0 by
�Fs, evolves with the S matrix

Ŝ�t� = T exp�−
i

�



0

t

Ĥtun���d�� , �19�

where T denotes time ordering. We distinguish operators in
the Schrödinger and interaction representations by the ab-
sence or presence of a time argument. In Sec. IV A we also
use operators in the Heisenberg representation and we indi-
cate these with a subscript H.

The presentation of the remainder of the calculation is
organized as follows. The observable we are concerned with
is the current through the MZI and we derive a convenient
form for the corresponding operator in Sec. IV A. The sim-
plifications arising in a model with only internal interactions
affect the calculation of the S matrix of Eq. �19�, which we
describe in Sec. IV B. To find the time evolution of fermion
operators we use bosonization, as set out in Sec. IV C. After

bosonization Ĥ0 is quadratic and may either be treated using
scattering theory �Sec. IV D� or diagonalized using a Bogo-
liubov transformation �Sec. IV E�. Inverting our transforma-
tions, we arrive in Sec. IV F at an expression for current at
long times, written in terms of fermion operators in the
Schrödinger picture, and show that this expression is suitable
for numerical evaluation. We give results for different
choices of interaction potential in Sec. V.

A. Derivation of the current operator

Although it is usual to write Ĥtun as in Eqs. �11� and �12�,
this is a shorthand since at finite tunneling strength the fer-
mion field is discontinuous at QPCs. For that reason we

regularize Ĥtun by considering QPCs of finite extent w, tak-

ing w→0 at the end of calculations. Then, for example, Ĥtun
b

has the form

Ĥtun
b =

1

w



0

w

dx�vbei
�̂1
+�d1 + x��̂2�d2 + x� + H.c.� . �20�

The current operator can be found in the standard way from

the number operator N̂1=��̂1�x�dx for electrons on the upper

edge, by evaluating its commutator with Ĥ. This gives for
the current at QPC b

Îb = −
2e

w�
I


0

w

vbei
�̂1
+�d1 + x��̂2�d2 + x�dx �21�

and a similar expression for Îa, the current at QPC a. To
calculate the position dependence of fermion fields within
the QPCs we introduce operators in the Heisenberg represen-
tation with the time dependence

ÂH�t� = eiĤt/�Âe−iĤt/�. �22�

The equations of motion for the fermion operators at the
contact b have in the interval 0�x�w the form

��t + vF�x��̂1H
+ �d1 + x,t� = i

vb

w
e−i
�̂2H

+ �d2 + x,t� ,

��t + vF�x��̂2H
+ �d2 + x,t� = i

vb

w
ei
�̂1H

+ �d1 + x,t� .

This system of equations has in the same interval the
solution

�̂�H
+ �d� + x,t� = 	

��=1,2

M����̂��H
+ �d��,t − x/vF� , �23�

where M =exp�ix�� and the matrix � is

� =
vb

wvF
� 0 e−i


ei
 0
� .

An explicit expression for the matrix M is

M = � cos ��x� ie−i
 sin ��x�
iei
 sin ��x� cos ��x� �

with ��x�=xvb /wvF�. Taking the limit w→0 and writing �
=+0, we arrive at a relation between fermion operators at
d�+�, just after the tunneling contact b, and those at d��−�,
just before the contact

�̂�H
+ �d� + �,t� = 	

��=1,2

S���
�b���̂��H

+ �d�� − �,t� �24�

with the scattering matrix

S�b� � � rb − itbei


− itbe−i
 rb
� . �25�

In this way the reflection ra,b=cos �a,b and transmission ta,b
=sin �a,b amplitudes at the contact a , b are expressed in
terms of the angles �a,b=va,b /�vF.
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Substitution of Eq. �23� into Eq. �21� and reversion to the

Schrödinger picture gives for the current operator Îb the re-
sult

Îb = evF�tb
2��̂1H�d1 − �� − �̂2H�d2 − ��� + tbrb

	�iei
�̂1H
+ �d1 − ���̂2H�d2 − �� + H.c.�� �26�

in which we show explicitly that all operators are evaluated
at a point infinitesimally before the contact. In the following
we will omit �. An expression for the current operator at
QPC a is obtained from Eq. �26� by substituting 0 for d1,2
and replacing �b with �a. The total current operator is then

Î= Îa+ Îb.
When considering expectation values, denoted by � . . .  or

by omitting hats, it is useful to separate the contribution from
QPC b into two terms, Ib= Ib

�1�+ Ib
�2�, with

Ib
�1� = evFtb

2��̂1�d1� − �̂2�d2� ,

Ib
�2� = evFtbrb�iei
�Ĝ12 + H.c.� , �27�

where Ĝ12= �̂1
+�d1��̂2�d2�. The term Ib

�2� is sensitive to the
coherence between edges while Ib

�1� is insensitive. Since there
is no coherence between channels before contact a, Ia

�2�=0
and the contribution to the current from this contact is

Ia
�1� = evFta

2��̂1�0� − �̂2�0� . �28�

The term responsible for AB fringes in the current is Ib
�2� and

our general task is to calculate �Ĝ12.
In experiment the differential conductance G=edI /d�1

�with �2 fixed� is measured at finite bias voltage V= ��1
−�2� /e. G oscillates with �, having maximum and minimum
values Gmax and Gmin. The AB fringe visibility is defined as

V =
Gmax − Gmin

Gmax + Gmin
. �29�

B. Evaluation of the S matrix

We require the action of the S matrix, Eq. �19�, on the
initial state �Fs. This state is represented by a product of
fermion creation operators acting on the vacuum and we

need to find how Ŝ�t� transforms the fermion operators.

Evaluation of Ŝ�t� is based on our restriction of interactions

to the interior of the MZI. Specifically, separating Ĥtun into

parts Ĥtun
a and Ĥtun

b due to each QPC, we find �see Appendix
A� that

�Ĥtun
a �t1�,Ĥtun

b �t2�� = 0 �30�

for t1� t2. This leads to a factorization of the S matrix into

the product Ŝ�t�= Ŝb�t�Ŝa�t�, where Ŝa�t� is the S matrix cal-

culated using Ĥtun
a , and Ŝb�t� using Ĥtun

b . A second commuta-
tor �see again Appendix A�

�Ĝ12�t1�,Ĥtun
b �t2�� = 0

also valid for t1� t2, ensures that

�Ŝb�t��+Ĝ12�t�Ŝb�t� = Ĝ12�t� �31�

so an explicit form for Ŝb�t� is not required in the calculation.
Since QPC a acts before the interacting region, it is easy to

evaluate Ŝa�t� �Appendix B�: we have

�Ĥtun
a �t1�,Ĥtun

a �t2�� = 0

for any t1 , t2�0 and so may omit time ordering. The action

of Ŝa�t� on fermionic operators is a rotation in the space of
channels and can be written as

�̃̂��x� = �Ŝa�t��+�̂���x�Ŝa�t� . �32�

For 0�x�vFt we find the transformation

�̃̂��x� = 	



S�

a �̂
�x� �33�

with the rotation matrix given by

Sa = � ra − itaei�

− itae−i� ra
� . �34�

C. Bosonization

To compute the time evolution of operators in the inter-

action representation under Ĥ0 we use bosonization.35 This
gives us an exact correspondence between fermion and bo-
son operators via the bosonization identity

�̂��x� = �2�a�−1/2F̂�ei�2�/L�N̂�xe−i�̂��x�, �35�

where bosonic fields are defined as

�̂��x� = − 	
q�0

�2�/qL�1/2�eiqxb̂q� + H.c.�e−qa/2 �36�

and a is an infinitesimal regulator, which does not enter the
final results. The plasmon creation and annihilation operators
�which have q�0� obey bosonic commutation relations

�b̂q�, b̂k��
+ � = qk���. �37�

They can be expressed in terms of fermions as

b̂q�
+ = i�2�/qL�1/2 	

k=−�

�

ĉk+q�
+ ĉk�. �38�

The commutation relations for the fields �̂��x� �omitting
terms proportional to 1 /L: see discussion in Ref. 35� read

��̂��x�,�y�̂���y�� = − 2�i�x − y����.

The Klein factors F̂�, which change fermion number by one,
satisfy the commutation relations

�F̂�,F̂��
+ � = 2���,�N̂�,F̂��� = − ���F̂�

with the standard expression for the particle number operator
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N̂� � 	
k=−�

�

ĉk�
+ ĉk� − 	

k=−�

�

�0�ĉk�
+ ĉk��0 �39�

in the edge �. Here the vacuum state �0 satisfies

ĉk�
+ �0 � 0, k � 0,

ĉk��0 � 0, k � 0.

The commutators �F� , b̂k��� and �N̂� , b̂k��� are zero. The
electron-density operator is given by

�̂��x� = −
1

2�
�x�̂��x� + N̂�/L . �40�

Since Ĥ0 does not couple channels, in the following we
restrict our attention to a single channel and omit channel

labels until we reach Sec. IV F. The kinetic energy Ĥkin for a
single edge in bosonized form is

Ĥkin =
�vF

2



−L/2

L/2 dx

2�
��x�̂�x��2 +

2�

L

�vF

2
N̂�N̂ + 1� . �41�

Similarly, Ĥint is quadratic, and given by

Ĥint =
1

2



0

d 

0

d

U�x,x���̂�x��̂�x��dxdx�. �42�

Using this form of the Hamiltonian, our objective is to ex-
press the time-dependent boson field �̂�d , t� in the interaction

representation, in terms the boson operators b̂q and b̂q
+ in the

Schrödinger representation. We set out two approaches to
this calculation. One is based on the formalism of scattering
theory. We use this to treat interactions for which we can
obtain simple expressions for plasmon scattering phase
shifts. The other is based on a Bogoliubov transformation.
We use it to study Coulomb interactions.

D. Scattering approach

The theory of plasmon scattering in spatially inhomoge-
neous systems of quantum-Hall-edge channels has been stud-
ied quite extensively. An early treatment of a Hall bar is
given in Ref. 36 and a recent application to an MZI is de-
scribed in Ref. 29. For the model we are concerned with,
consider the equation of motion

i��t�̂�x,t� = ��̂�x,t�,Ĥ0� . �43�

We separate �̂�x , t�= �̂�0��x , t�+ �̂�1��x , t� into a part �̂�0��x , t�,
proportional to N̂, and another part �̂�1��x , t�, independent of

N̂. They obey

i��t�̂
�0��x,t� = − i�vF�x�̂

�0��x,t� + i
N̂

L



0

d

U�x,y�dy

−
i

2�



0

d

U�x,y��y�̂
�0��y,t�dy �44�

and

i��t�̂
�1��x,t� = − i�vF�x�̂

�1��x,t� −
i

2�



0

d

U�x,y��y�̂
�1��y,t�dy

�45�

with initial conditions �̂�0��x ,0�=0 and �̂�1��x ,0�= �̂�x�. Our
aim is to find the Green’s function for Eq. �45�.

The basis functions for a mode expansion of �̂�1��x , t�
obey the time-independent Schrödinger equation

�pfp�x� = − ivF�xfp�x� −
i

2��



0

d

U�x,y��yfp�y� �46�

and satisfy the orthonormality relation



−L/2

L/2

fp�x��xfq
��x�dx = − 2�ipq. �47�

The Green’s function can therefore be written as

K�x,y ;t� =
i

2�
	

p

fp�x��yfp
��y�e−i�pt �48�

and we have

�̂�1��x,t� = 

−L/2

L/2

K�x,y ;t��̂�y�dy . �49�

Interactions within the MZI generate a frequency-
dependent phase shift p for plasmons and the form of fp�x�
on either side of the interaction region is �neglecting a cor-
rection to the normalization that vanishes as d /L→0�

fp�x� = − �2�

qL
�1/2�eiqx x � 0

ei�qx−q� x � d .
�

With periodic boundary conditions at finite L, the allowed
values of q are fixed by the condition fp�−L /2�= fp�L /2�, and
these determine the frequencies �p=vFq. At long times and
for large L, the quantity we require, K�d ,y ; t�, can be ex-
pressed solely in terms of these phase shifts as

K�d,y ;t� =
1

2�



−�

�

dpei�p�d−y−vFt�−p�. �50�

From this we obtain

�̂�1��x,t� = 	
q�0

�zq�x,t�b̂q + H.c.� �51�

in which the coefficients at long times have the form

zq�d,t� = − �2�/qL�1/2eiq�d−vFt�−iq. �52�

The long time limit of �̂�0��d , t�, which we write as �̂0�d�,
can also be expressed in terms of the phase shifts, as

�̂0�d� = 2�
N̂

L
lim
q→0

q

q
. �53�

E. Diagonalization by Bogoliubov transformation

An alternative approach is to diagonalize the Hamiltonian.

Substituting Eq. �36� into Ĥ0 we obtain
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Ĥ0 = �vF 	
q�0

q�b̂q
+b̂q + 1/2� +

�

2L
	

k,q�0

�qk�u−q,−kb̂qb̂k
+

+ uq,kb̂q
+b̂k − uq,−kb̂q

+b̂k
+ − u−q,kb̂qb̂k� + ĤN� + ĤN,

�54�

where the matrix elements of the interaction potential are

uq,k =
1

2��



0

d 

0

d

e−iqx+ikyU�x,y�dxdy .

They obey the relations uq,k
� =u−q,−k and uq,k=u−k,−q.

The last two terms in Eq. �54� involve the number opera-

tor N̂. The first of them appears because of our choice of
nonuniform interactions, which leads to a coupling

ĤN� = i��N̂/L��2�/L�1/2	
k�0

�k�u0,kb̂k − u0,−kb̂k
+� �55�

between the plasmon and the number operators: by contrast,
in a system with translationally invariant interactions there

would be no such coupling. The other term, ĤN, has the form

ĤN =
2�

L

�vF

2
N̂�N̂ + 1� +

N̂2

2L2

0

d

U�x,x��dxdx�. �56�

Since interactions in our model are limited to the finite re-
gion of length d, the second term in Eq. �56� gives a correc-
tion to, for example, the equation of motion of the Klein
factor that is small in d /L and so vanishes in the thermody-
namic limit. We therefore omit it in the following.

Contributions to the Hamiltonian linear in N̂ are removed
by making the shifts

b̂q = b̃q + �qN̂ �57�

with coefficients �q given by

vF�q +
1

L
	
k�0

�k/q�uqk�k − uq,−k�k
�� =

i

L
�2�

qL
�1/2

uq0.

�58�

The Hamiltonian, Eq. �54�, written in terms of these
shifted operators, is diagonalized using a Bogoliubov trans-
formation of the form


̂p
+ = 	

q�0
�Apqb̃q

+ + Bpqb̃q� . �59�

To preserve the commutation relations we require

	
k�0

�ApkAkq
+ − BpkBkq

+ � = pq, �60�

	
k�0

�BpkAkq
T − ApkBkq

T � = 0, �61�

which can be written in the matrix form

� A B

B� A� �� A+ − BT

− B+ AT � = � I 0

0 I
� , �62�

where I is the identity matrix.

The result is

Hb = 	
p�0

��p�
̂p
+
̂p + 1/2� + ĤN + const. �63�

The time dependence of the transformed boson operators is
given in the usual way in terms of their frequencies �p as


̂p�t�=e−i�pt
̂p. Expressions for the coefficients Apq , Bpq can
be found from the commutator

�t
̂q = − i�
̂q,Ĥb� = − i��q
̂q, �64�

which leads to the linear system of Bogoliubov equations

��p − vFq�Apq = 	
k�0

�qk�uqkApk + uq,−kBpk� ,

��p + vFq�Bpq = − 	
k�0

�qk�u−q,kApk + u−q,−kBpk� . �65�

From Eq. �62� we can obtain the inverse of the Bogoliu-
bov transformation, which we write in the interaction repre-
sentation as

b̃q
+�t� = 	

p�0
�
̂p

+ei�ptApq
� − 
̂pe−i�ptBpq� . �66�

Substituting Eqs. �57� and �59� into Eq. �66� we obtain the
time dependence of the bosonic fields in terms of the original

operators b̂q written in the Schrödinger representation as

�̂�x,t� = �̂�0��x,t� + 	
q�0

�zq�x,t�b̂q + H.c.� , �67�

where

zq�x,t� = 	
p�0

�Apq
� fp�x�e−i�pt + Bpqfp

��x�ei�pt� �68�

with

fp�x� = − 	
q�0

�2�/qL�1/2�Apqeiqx − Bpqe−iqx� . �69�

The term �̂�0��x , t� in Eq. �67�, arising from the operator
shifts, is given by

�̂�0��x,t� = �̂0�x� − N̂	
q�0

�zq�x,t��q + c.c.� �70�

with

�̂0�x� = − N̂	
q�0

�2�/qL�1/2��qeiqx + c.c.� .

It is easy to check that at t=0 the field in Eq. �67� is equal to
the Schrödinger operator �̂�x� of Eq. �35� since zq�x ,0�
=−�2� /qL�1/2eiqx and �̂�0��x ,0�=0.

To make use of these results, the Bogoliubov coefficients
Apq, Bpq, and �q, and frequencies �p are required. They can
be found from Eqs. �58� and �65�, using a numerical treat-
ment with a momentum cutoff.

F. Evaluation of the correlators

In this section we explain how the treatment we have
described of the bosonized Hamiltonian enables evaluation
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of the correlator Ĝ12�t�, which appears in Eq. �27� and deter-
mines visibility of AB oscillations. When written using fer-
mion fields in the interaction representation, it is

Ĝ12�t� = �Fs��Ŝa�t��+�̂1
+�d1,t��̂2�d2,t�Ŝa�t��Fs . �71�

Our objective is to express �̂1
+�d1 , t� and �̂2�d2 , t� in terms

fermion fields �̂��x� and �̂�
+�x� in the Schrödinger represen-

tation so that the expectation value in the state �Fs can be
computed. To this end we use the bosonization identity, Eq.
�35�, and simplify notation by defining

F̂��t� � �2�a�−1/2eiĤ0tF̂�ei�2�/L�N̂�d�e−iĤ0t. �72�

Then

�̂��d�,t� = F̂��t�e−i�̂��d�,t�. �73�

The bosonic field ���d� , t� which appears here in the inter-
action representation is related at long times to one in the
Schrödinger representation by Eqs. �52� and �53�. In addi-

tion, the time evolution of the operator F̂��t� can be found in

the usual way, via its commutator with Ĥ0 �the contribution

from ĤN� is small in d /L and can be omitted in the thermo-
dynamic limit�, giving

F̂��t� = �2�a�−1/2F̂�ei�2�/L�N̂��d�−vFt�. �74�

We wish to substitute for the Klein factor F̂� in this expres-

sion. Consider a fermionic operator �̂��z�� with z�=d�−vFt.
In the bosonized form, from Eq. �35� it is

�̂��z�� = �2�a�−1/2F̂�ei�2�/L�N̂��d�−vFt�e−i�̂��z��. �75�

Multiplying Eq. �75� by ei�̂��z�� from the right we obtain
F��t� in terms of the fermion operators and bosonic fields in
their Schrödinger representation, as

F̂��t� = �̂��z��ei�̂��z�� = ei�̂��z���̂��z�� , �76�

where the second equality holds due to the commutation re-
lations of Klein factors with bosonic operators. Substituting
Eq. �76� into Eq. �73� we obtain

�̂��d�,t� = e−i�̂��d�,t�ei�̂��z���̂��z�� , �77�

which can be written as

�̂��d�,t� = e−i��e−i��̂��d�,t�−�̂��z����̂��z�� , �78�

where the constant phase shift �� is given by

�� =
i

2

 dq

q
e−iq�. �79�

Finally, we substitute for b̂q� and b̂q�
+ in �̂��x� in terms of

fermion operators, using Eq. �38�, with the result

�̂��d�,t� = e−i��e−iQ̂��̂��z�� . �80�

Here the phase operator Q̂� is

Q̂� = 

−�

�

Q��x − z���̂��x�dx , �81�

where kernel Q��x�=�dqQ̃��q�eiqx has Fourier transform

Q̃��q� = −
i

q
�eiq� − 1� . �82�

Equation �80� is a key result which has a direct physical
interpretation. An electron passing through the interferometer
accumulates a phase due to interactions with other electrons.
This phase is a collective effect and it is represented at the

point where the electron leaves the MZI by the operator Q̂�

in Eq. �80�. Contributions to the phase from the interactions
with particles at a position x from the QPC b have a weight
determined by the kernel Q��x�. The form of the kernel is
illustrated in Fig. 7 for the case of a charging interaction,
studied in Sec. V A. The kernel has a maximum near x=0,
showing that interactions with nearby electrons are most im-
portant, but the phase is influenced by all the electrons which
have passed the interferometer, although with contributions
which decay with the distance x. The precise form of the
kernel depends on the nature of the interaction potential and
reflects the full many-body physics of the problem. A similar
kernel appears in Eq. �11� of Ref. 32 but with a simpler form
because of the approximations employed there. It is shown
for comparison in Fig. 7; see discussion in Sec. VI.

Substituting Eq. �80� into Eq. �71� we arrive at

�Ĝ12�t� = ei�̄�Fs��Ŝa�t��+�̂1
+�z1�eiR̂�̂2�z2�Ŝa�t��Fs .

Here R̂= Q̂1− Q̂2 and �̄=�1−�2. The action of Ŝa�t�+ and

Ŝa�t� on the operators they enclose is given by Eq. �33�. After
this transformation the correlator reads

−2 −1 0 1 2 3 4 5
x/d

−2

0

2

4

6

Q
(x

)

FIG. 7. The kernel Q�x� of Eq. �81� for different values of the
interaction strength: �=0.1 �short-dashed line�, �=0.2 �dot-dashed
line�, �=0.5 �long-dashed line�, �=1.0 �dotted line�, and �=3.0
�full line� compared to that of Eq. �11� of Ref. 32 at �=1.0 �thin full
line�.
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�Ĝ12�t� = ei�̄ 1

L 	
k,q=−�

�

S1�
a�S2


a e−ikz1+iqz2 	 �Fs��ĉk�
+ eiR̂ĉq
�Fs�

�83�

with summation over repeated indices � , 
. Here R̂
= �Ŝa�t��+R̂Ŝa�t� is the rotated kernel

R̂ = S1�
a�S1


a 

−�

�

dxQ1�x − z1��̂�
+�z1��̂
�z1�

− S2�
a�S2


a 

−�

�

dxQ2�x − z2��̂�
+�z2��̂
�z2� . �84�

Now evaluation of �Ĝ12�t� reduces to the calculation of cor-
relators of the form

C�� = �Fs�ĉ�
+ exp�i	

�


M�
ĉ�
+ĉ
�c��Fs , �85�

where the indices specify both channel and momentum, and

the matrix M is obtained from R̂. One can show �see Appen-
dix C� that C��=D��

−1 det D with D constructed from the
matrix elements of exp�iM� between the single-particle states
that are occupied in the Slater determinant �Fs. We calculate
C�� numerically, achieving convergence of the results when
keeping up to 103 basis states and 400 particles in each chan-
nel: further details are given in Appendix D.

V. RESULTS FOR VARIOUS INTERACTION POTENTIALS

In this section we apply our theory to study interferom-
eters with the three types of interaction potential introduced
in Sec. III. In the absence of interactions the interferometer at
finite bias is specified by four dimensionless parameters: the
tunneling probabilities ta

2 and tb
2 at the two QPCs; the dimen-

sionless bias eV�d1d2 /2��vF; and the ratio of the arm
lengths d2 /d1. The tunneling probability tb

2 at the second con-
tact QPC affects only the overall scale for visibility of AB
oscillations and we set it to tb

2=1 /2. Interactions in general
introduce another parameter, characterizing their strength.
Exponential and Coulomb interactions also depend on a fur-
ther parameter: the interaction range or the short-distance
cutoff, respectively.

A. Charging interaction

Consider first the charging interaction, Eq. �13�. It is char-
acterized by the single dimensionless coupling constant �
=gd /2��vF. Solving Eq. �46� we find

fp�x� = − �2�

qL
�1/2�eiqx x � 0

rp + speiqx 0 � x � d

eiqx−iq x � d
�

with q=�p /vF. Matching fp�x� at x=0 and x=d gives sp
= �1+ tp�−1 and rp= tpsp with tp= �g /2�i��p��ei�pd/vF −1�. The
phase shift p of plasmons due to the interactions is

e−ip = �1 + tp
��/�1 + tp� . �86�

Similarly, we find

�̂0�x� = 2��̄N̂x/L �87�

for 0�x�d, where �̄=��1+��−1. The contribution

− 1
2��x�̂0�x�=−�̄N̂ /L to the density inside the interferometer

represents charge expulsion due to interactions: in the limit
of strong interactions the average density inside the interfer-
ometer in the stationary regime is pinned at zero, indepen-

dently of N̂.
The plasmon phase shift, as shown in Fig. 8, varies lin-

early with frequency at low frequency and falls to zero at
high frequency. The maximum occurs at a frequency that
increases with interaction strength and �for general interac-
tions� depends on the shorter of two lengths: the interaction
range and the arm length. For strong interactions, the phase
shift at fixed frequency approaches the limiting value p
=�pd /vF. It then exactly cancels the kinetic phase qd. This
remarkable cancellation together with the charge expulsion
results in behavior independent of arm length when interac-
tions are strong. A similar cancellation was found for a dif-
ferent model in Ref. 30.

We now turn to behavior of the interferometer. We con-
sider first the case ta

2=1 /2 and d1=d2. Results for the visibil-
ity of AB fringes as a function of bias voltage and interaction
strength are presented in Fig. 9. Without interactions, visibil-
ity is independent of bias, having a value fixed by the tun-
neling probabilities in the QPCs. Interactions generate a de-
pendence of visibility on bias. Visibility at small bias is
unaffected by interactions because in this regime there is
only one extra electron inside the interferometer at a time but
with increasing voltage the visibility follows a sequence of
lobes separated by zeros. The width in bias voltage of lobes
is inversely proportional to � for small � and saturates at a
value close to ��vF /ed for ��1. The phase of AB fringes is
independent of bias inside the lobes and jumps by � at the
zeros of visibility. Both features, the lobes in the visibility
and the phase slips, match those of experiment by Neder et
al. �see Figs. 2 and 3 of Ref. 2�.

0 1 2 3 4 5
ωd/2πvF

0

0.2

0.4

0.6

0.8

δ(
ω

)/π

FIG. 8. Frequency dependence of the plasmon phase shift for a
charging interaction with strength �=0.1 �dot-dashed line�, �=0.2
�long-dashed line�, �=0.5 �short-dashed line�, �=1.0 �dotted line�,
and �=3.0 �full line�.
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It is interesting to note that the visibility can become
larger than one. This signals a negative value of the differ-
ential conductance. Similar behavior has been reported
previously.28

Results for an interferometer with unequal arm lengths,
d2 /d1=1.2, are presented in Fig. 10. The gross behavior at
intermediate and large interaction strengths is similar to that
for an interferometer with equal length arms. The visibility
minima for d1�d2, however, are not exact zeros: they ap-
proach zero at large interaction strength but disappear alto-
gether in the opposite limit of weak interactions. There is a
corresponding evolution with interaction strength in the de-
pendence of the phase of AB fringes on bias voltage. In the
absence of interactions this phase varies linearly with bias
for an MZI with different length arms because the Fermi
wave vector kF is linear in bias and the phase difference
between particles traversing the two arms is kF�d2−d1�. With
increasing interaction strength the phase dependence on bias
develops into a series of smooth steps, each of height �. The
risers of these steps coincide with minima of the visibility.
Strikingly, for the interacting system phase steps at minima
of the visibility persist for d1=d2 even though in this case
phase would be independent of bias without interactions. Be-
tween risers the AB phase is almost independent of the ratio
d2 /d1 when interactions are strong because of the cancella-
tion between kinetic and interaction contributions to plasmon
phase, as discussed above. The stepwise phase variation we
find at large interaction strength also matches experimental
observations �see Fig. 2 of Ref. 2�.

Behavior of the visibility is insensitive to the transmission
probability tb

2 at QPC b, apart from the overall scale. Depar-
tures from ta

2=1 /2, however, like unequal arm lengths, elimi-
nate the exact zeros in visibility, leaving only sharp minima.
The dependence of visibility on voltage for ta

2=0.75 is shown
in Fig. 11.

B. Exponential interaction

We next consider the interaction potential of Eq. �15�,
which decays exponentially with separation. It is character-

ized by g, the interaction strength, and 1 /�, the range. In this
case the Schrödinger equation, Eq. �46�, for 0�x�d has the
form

− i�pfp�x� + vF�xfp�x� = −
g

2��



0

d

e−��x−y��yfp�y�dy .

�88�

Differentiating Eq. �88� twice with respect to x we obtain

�xxxfp�x� − i��p/vF���xxfp�x� − �2fp�x��

− ��/d��2� + �d��xfp�x� = 0 �89�

with �=gd / �2��vF� as before. This equation has a solution
of the form

fp�x� = 	
n=1

3

Aneiknx, �90�

where the An are in general complex coefficients and the
wave vectors kn are obtained by solving the cubic equation
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FIG. 9. Visibility as a function of bias voltage for an MZI with
charging interactions, and with d1=d2 and ta

2= tb
2=1 /2, at interaction

strengths: �=0.1 �short-dashed line�, �=0.2 �dot-dashed line�, �
=0.5 �long-dashed line�, and �=1.0 �full line�. The phase of the AB
fringes �not shown� jumps by � at zeros of the visibility.
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FIG. 10. Visibility �upper panel� and AB phase �lower panel� as
a function of bias voltage for an MZI with d2 /d1=1.2 and ta

2= tb
2

=1 /2 at interaction strengths: �=0.1 �short-dashed line�, �=0.2
�dot-dashed line�, �=0.5 �long-dashed line�, and �=1.0 �full line�.
The linear dependence of the AB phase in the noninteracting case
�=0 is shown on the lower panel �thin full line�.
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�p = kvF�1 + Ũ�k�/2��vF� . �91�

Here Ũ�k�=2�g / �k2+�2� is the Fourier transform of the po-
tential in Eq. �15�. Substitution of Eq. �90� into Eq. �88�
gives two linear equations on An and the boundary condition
fp�0�=1 yields a third equation. These determine the coeffi-
cients An and read

	
n=1

3

An = 1, 	
n=1

3

An
kneiknd

kn + i�
= 0,

and

	
n=1

3

An
kn

kn − i�
= 0. �92�

Solving Eqs. �90� and �92� numerically we obtain the phase
shifts from

p = − Arg�fp�d�e−i�d/vF� . �93�

The frequency dependence of this phase shift is shown in
Fig. 12 for different values of the interaction range 1 /� and
the interaction strength �=1. The main features, of a linear
variation at low frequency and a phase shift approaching

zero at high frequency, are independent of range.
The resulting fringe visibility in an MZI with these inter-

actions is illustrated in Fig. 13. At fixed interaction strength
the visibility has zeros at values of the bias voltage which are
set by the energy scale �vF� for interactions with range
much shorter than the arm length and by 2��vF /d for inter-
actions with range in the opposite limit.

C. Coulomb interaction

Finally we consider the unscreened Coulomb interaction,
Eq. �16�, which is characterized by its strength �c
=gc /2��vF and the short-distance cutoff ac. We treat the
regime ac�d; in the opposite limit it is similar to the charg-
ing interaction discussed in Sec. V A. �Coulomb interactions
have been studied previously,28 without our restriction that
they act just within the MZI, but only perturbatively in tun-
neling at QPCs.� To calculate the plasmon phase shifts in this
case we solve the Bogoliubov equations �Eq. �65�� numeri-
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FIG. 11. Visibility �upper panel� and the AB phase �lower panel�
as a function of bias voltage for an MZI with d2=d1, ta

2=0.75, and
tb
2=1 /2, and charging interactions of strength: �=0.1 �short-dashed

line�, �=0.5 �dot-dashed line�, �=1.0 �long-dashed line�, �=2.0
�dotted line�, and �=3.0 �full line�.
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FIG. 12. Frequency dependence of the plasmon phase shift for
exponential interactions of strength �=0.5 and range: �d=2 �dotted
line�, �d=1 �dot-dashed line�, �d=0.5 �dashed line�, and for a
charging interaction, �d=0 �solid line�.
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FIG. 13. Visibility as a function of bias voltage for an MZI with
exponential interactions �Eq. �15��, with d2=d1, ta

2= tb
2=1 /2, and �

=0.5, for interaction ranges: �d=0.5 �dashed line�, �d=1 �dotted
line�, and �d=2 �solid line�.
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cally. Results for the bias dependence of visibility are pre-
sented in Fig. 14. The visibility again shows lobes. Their
width in bias voltage is inversely proportional to the interac-
tion strength �c for weak interactions and is set by the inter-
ferometer energy scale 2��vF /d for strong interactions. In
summary, while the detailed shape of oscillations in visibility
with bias voltage depends on the model used for interactions,
the main features are independent of this choice.

VI. DISCUSSION OF THE APPROACH
OF NEDER AND GINOSSAR

In a recent paper32 Neder and Ginossar have presented an
approximate treatment of interaction effects in an MZI, using
the charging interaction of Eq. �13�. They arrive at a result
similar in form to the exact one given above in Eqs. �80� and
�81� but with a different kernel Q�x�: see the comparison in
Fig. 7. Making further simplifications in the course of a nu-
merical evaluation, they obtain nodes in the dependence of
visibility on bias voltage. We discuss their approach in this
section �we note that various choices of kernel and of ap-
proximations schemes in this type of numerical evaluation
have also been discussed in Ref. 31�. We show that their
central approximation is equivalent to neglect of the chiral
anomaly in the Tomonaga-Luttinger model, and explain
physically what this entails. We also examine how far the
differences between results for visibility in Ref. 32 and those
in the present paper are due to this central approximation,
and how far they stem from simplifications of the numerical
evaluation made in Ref. 32. To do this we make a numeri-
cally exact calculation of the fringe visibility using the kernel
of Ref. 32 and compare the outcome with our own results.

A. Single edge with translationally invariant interactions

The approach under discussion starts from the Heisenberg

equation of motion for an operator ÂH�t�. Consider first a

single edge channel without QPCs. In this case the equation
of motion is

i��tÂH�t� = �ÂH�t�,H0� �94�

with initial condition ÂH�0�= Â, where Â is the operator in
the Schrödinger representation. In the absence of interactions
Eq. �94� for the field operator has the solution

�̂H
+ �d,t� = �̂H

+ ��,t − d�/vF� . �95�

Next, include translationally invariant interactions U�x ,x��
=U�x−x�� with U�0�=0 to avoid self-interactions. The equa-
tion of motion is

i���t + vF�x��̂H
+ �x,t� = − �̂H

+ �x,t�

−�

�

U�x − x���̂H�x�,t�dx�.

�96�

It apparently has the solution

�̂H
+ �x,t� = ei�̂H�x,t��̂H

+ �x − vFt,0� , �97�

where the phase operator �̂H�x , t� is given by

�̂H�x,t� =
t

�



−�

�

U�x���̂�x − vFt + x�,0�dx�. �98�

This calculation is essentially a version in the Heisenberg
picture of the solution of the Tomonaga-Luttinger model by
Luttinger,37 who used a canonical transformation to diago-
nalize the Hamiltonian. It is exact provided the number of
particles in the system is finite. The difficulty, of course, is
that for finite particle number a model with linear dispersion
has no ground state and so one wants to introduce a filled
Fermi sea. Unfortunately, as shown by Leib and Mattis,38 the
calculation is then no longer exact because density operators
which commute when particle number is finite no longer do
so in the presence of the Fermi sea.

To illustrate the difference in physical behavior between a
system with a finite number of particles and one with a Fermi
sea, it is useful to consider the time evolution of an initial
state in which single-particle orbitals are all occupied for
wave vectors k in the range 0�k�kF and others are all
empty. We denote this state by �kF and compare its evolution
with that of the state with a Fermi sea, in which all orbitals
with k�kF are occupied. The latter is an exact eigenstate of

Ĥ0 for arbitrary choice of interaction and so has trivial time
evolution. By contrast, �kF is not an eigenstate in the pres-
ence of interactions. To be specific, we calculate the time
dependence of the particle number n̂�Q�= ĉQ

+ ĉQ in an orbital
with wave vector Q. Within a short-time expansion we have

�n̂�Q,t� = �n̂�Q� + it��Ĥ0, n̂Q� −
t2

2
��Ĥ0,�Ĥ0, n̂Q�� . . .

�99�

For the state �kF the average ��Ĥ0 , n̂�Q��=0. The second-
order term is conveniently expressed in terms of
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FIG. 14. Visibility as a function of bias voltage for an MZI with
unscreened Coulomb interactions �Eq. �16��, taking a short-distance
cutoff ac=0.1d1, d2=d1, ta

2= tb
2=1 /2, and interaction strengths: �c

=0.05 �dot-dashed line�, �c=0.1 �dashed line�, and �c=0.15 �solid
line�.
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Ũ�q� = 

−�

�

dxU�x�eiqx �100�

the Fourier transform of the interaction potential. Taking kF
−1

to be much smaller than the interaction range, and writing
Q=kF+ P with P�0, we find

�n̂�Q,t� = t2�Ĥ0n̂�Q�Ĥ0 + ¯ =
t2

8�2

P

�

dqq�Ũ�q��2 + O�t3� .

Similarly, for −kF� P�0 we obtain

�n̂�Q,t� = 1 −
t2

8�2

−P

�

dqq�Ũ�q��2 + O�t3� . �101�

This shows that interactions scatter particles from the orbit-
als they occupy initially in �kF to others of larger and
smaller energy. The pair of particles involved in a typical
scattering event has one initial wave vector just less than kF
and the other just larger than zero. One particle is scattered to
a state with wave vector k�kF and the other to a state with
negative wave vector. The rate for this process remains finite
even when kF is large but in the presence of a Fermi sea
these scattering processes are blocked by Pauli exclusion.

B. Interactions confined to a finite region

To demonstrate that no other approximations are involved
in the derivation of the kernel of Ref. 32, we next set out a
calculation equivalent to the one leading to Eq. �97�, but for
interactions that operate only in the finite region 0�x�d
and are translationally invariant within this region, so that

Ĥint =
1

2



0

d 

0

d

U�x − x���̂�x��̂�x��dxdx�. �102�

Then the equation of motion for �̂+�x , t� can be solved by
integrating forward in time separately in each of three re-
gions and matching at boundaries. For x�0 we have

�̂+�x,t� = �̂+�x − vFt,0� . �103�

Within the approximation under discussion, for 0�x�d

�̂H
+ �x,t� = ei�̂H�x,t��̂H

+ �x − vFt,0� , �104�

where �̂H�x , t� satisfies the equation

��t + vF�x��̂H�x,t� =
1

�



0

d

U�x − x���̂H�x�,t�dx� �105�

with the boundary condition �̂�0, t�=0. This has the solution

�̂H�x,t� =
1

�vF
�


−vFt

x−vFt

�x� + vFt� + x

x−vFt

d−vFt

+ 

d−vFt

d+x−vFt

�d + x̃�� 	 U�x̃��̂H�x�,0�dx�

�106�

in which x̃=x−vFt−x�.

In particular, for x=d we have

�̂H�d,t� =
1

�vF



0

d

x�U�d − x���̂H�x�,t�dy

+
1

�vF



d

2d

�2d − x��U�d − x���̂H�x�,t�dx�.

�107�

In the region x�d we can use results from 0�x�d as a
boundary condition to obtain

�̂H
+ �x,t� = ei�̂H�d,t��̂H

+ �x − vFt,0� . �108�

For the charging interaction, Eq. �13�, this gives an expres-
sion for the kernel Q�x� appearing in Eq. �81� which is
equivalent to Eq. �11� of Ref. 32.

C. Interferometer with internal interactions

For an interferometer with only internal interactions, the
foregoing discussion can be combined with the approach de-
scribed in Secs. IV A–IV E. In particular, making use of Eq.
�108� in place of Eq. �82�, one arrives at alternative results
for visibility. We have evaluated these without further ap-
proximation for charging interactions. They are displayed in
Fig. 15. In this approximation the visibility as a function of
bias shows a lobe pattern similar to that given by our exact
solution �Fig. 9� but some significant differences are appar-
ent. In particular, within the approximate treatment visibility
at small bias is reduced from its value in the noninteracting
system and more so as interaction strength is increased. This
loss of coherence mirrors the scattering described by Eq.
�101�. It is not a feature of the exact treatment for a system
with a Fermi sea: in that case at small bias extra electrons are
dilute and pass independently through the interferometer.

VII. PERTURBATION THEORY IN INTERACTIONS

The approach we have used to obtain exact results can be
applied only to models in which interactions act solely
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FIG. 15. Visibility as a function of bias voltage for an MZI with
charging interactions, calculated using the kernel of Eq. �11� of Ref.
32, with d1=d2=1 and ta

2= tb
2=1 /2, for interaction strengths: �

=0.1 �dashed line�, �=0.2 �dot-dashed line�, and �=0.5 �solid line�.
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within the MZI. In order to gain some understanding of the
consequences of more general interactions, it is useful to
formulate perturbation theory in powers of interaction
strength. We outline such a calculation in this section. Since
details are quite messy �around forty separate terms appear at
first order in interaction strength�, we limit ourselves to
sketching how a new physical effect—a second harmonic in
the variation in differential conductance with AB flux—
appears when there are interactions between the interior and
exterior of the MZI. This expansion in powers of interaction
strength, which can be applied for arbitrary values of the
tunneling amplitude at QPCs, is complementary to the per-
turbation theory in tunneling strength, developed for arbi-
trary interaction strength in Ref. 28.

We separate the Hamiltonian, Eq. �7�, into the single-

particle contribution Ĥ1=Ĥkin+Ĥtun and the interaction term

Ĥint, and start from a single-particle basis of scattering states

of Ĥ1. These states are labeled by energy �vFq and by the
channel � �denoted 1 and 2 in Fig. 6� from which particles
are incident on the MZI. They have amplitude eiqx�q��x ,��
at point x in channel �. Thus, for example, �q1�x ,�� takes the
form given in Table I.

We consider an initial many-particle wave function ��0
in which scattering states are occupied up to Fermi wave
vectors p1 and p2, respectively, in the two incident channels,
representing a bias voltage V=�vF�p1− p2� /e. Using the in-

teraction representation Â�t�=eiĤ1t/�Âe−iĤ1t/� based on Ĥ1
�different, of course, from that employed in Sec. IV�, we
evolve the initial state forward in time from t=−� to t=0.

The current at zeroth and first order in Ĥint is

�Î�t�t=0 = ��0�Î�0���0 +
i

�



−�

0

��0��Ĥint���, Î�0����0d� .

�109�

To evaluate the interaction term in this expression we take
matrix elements in the basis of single-particle scattering
states, denoting for brevity the pair of labels qa , �a by a.
For an interaction U�x ,x�� that does not couple channels we
write

Ūabcd =
1

2

 
 dxdx�U�x,x��ei��qd−qa�x+�qc−qb�x��

	 	
�

�qa�
� �x��qb�

� �x���qc��x���qd��x� �110�

and define the antisymmetrized combination Uabbd= 1
2 �Ūabbd

− Ūabdb�. We evaluate matrix elements Iab of the current op-
erator by considering in the first instance a tunneling contact

of finite width w, then taking the limit w→0, as in Sec.
IV A. For example,

Ik1q1 = evF�ta
2 + ra

2tb
2eid1�q−k� − ta

2tb
2eid2�q−k�

+ taratbrb�ei��−
+qd1−kd2� + ei�
−�+qd2−kd1��� .

With this notation, and denoting by na the average occu-
pation of the state a, the first-order term from Eq. �109� has
the form

i

2�3�



−�

0

d�

−�

�

dka

−�

�

dkb

−�

�

dkc

	 UabbcIcanb�na − nc�eivF�ka−kc��.

Evaluating the integrals on �, ka, kb, and kc we obtain an
expression in which only integration on x and x� from Eq.
�110� remains. Because the factors �q��x ,�� take different
forms in each of the regions I, II, and III, defined in Fig. 6,
these final integrals naturally separate into distinct contribu-
tions according to the possible locations of each of two in-
teracting particles.

As an illustration of this general approach we consider the
contribution to current arising at first order from the interac-
tion between a particle in region II and one in region III. This
is made up of an exchange term IF

23 and a Hartree term IH
23.

To write expressions for these in a concise form we limit
ourselves to the case d1=d2�d and define the constant Tab
= tatbrarb. Then

IF
23 = −

8eTab
2

��
sin 2�

	 

0

d

dx

d

�

dx�U�x,x��
sin2��p1 − p2��x − x��/2�

�x − x��2

and

IH
23 =

2eTab
2

��
�p1 − p2�2sin 2� 	 


0

d

dx

d

�

dx�U�x,x�� .

As advertised, both terms involve the second harmonic
sin 2� of the AB phase �. They display the antisymmetry
expected for the current under reversal of both V and �. A
second harmonic is also produced by the interactions be-
tween the electrons in the regions I and III which we do not
present here. By contrast, a similar perturbative treatment of
interactions between electrons in region II generates only
zeroth and first harmonics of �, as expected from the results
presented in Sec. IV.

VIII. DISCUSSION

In summary, we have argued that electron interactions are
the origin of the experimentally observed dependence of vis-
ibility of AB oscillations on bias voltage in electronic MZIs.
This is illustrated most simply by calculations of two-particle
interference effects, described in Sec. II, and demonstrated in
detail by exact results for the many-body system, presented
in Sec. V. Our calculations rely on a simplified form for
interactions but we believe our choice is quite reasonable.

TABLE I. Amplitudes of the scattering state �q1�x ,��.

� x�0 0�x�d� d��x

1 1 ra rarb− tatbei�q�d2−d1�+
−��

2 0 −itae−i� −itarbe−i�− iratbei�q�d1−d2�−
�

MULTIPARTICLE INTERFERENCE IN ELECTRONIC… PHYSICAL REVIEW B 81, 155318 �2010�

155318-15



Our central approximation is to neglect interactions between
an electron inside the MZI and one outside. In practice, such
interactions will anyway be screened by the metal gates that
define the QPCs. We also neglect interactions between a pair
of electrons that are both outside the MZI. This is unimpor-
tant: before electrons reach the MZI, such interactions do not
cause scattering because of Fermi statistics, while after elec-
trons pass through the MZI, these interactions cannot affect
the current. We have given results for three forms of interac-
tion within the MZI, finding their main features to be inde-
pendent of details of the model. These features include a
series of lobes of decreasing amplitude in AB fringe visibil-
ity as a function of bias, with jumps by � in the phase of AB
oscillations near minima in visibility.

The width in bias voltage of the central visibility lobe
defines an energy scale. For our model of charging interac-
tions this scale is of order g at large �. Taking vF=2.5
	104 ms−1, d=10 �m, and the permittivity �=12.5 of
GaAs, we estimate from the capacitance of an edge channel
g�10 �eV. This is similar to the experimentally observed
value of about 14 �eV, given in Ref. 2.

We close by comparing the results we have presented with
those from other approaches. As a first step, we note that,
while the existence of multiple side lobes in the visibility of
AB oscillations as a function of bias voltage cannot be ac-
counted for by a simple treatment of dephasing, a single-side
lobe can emerge from a simple, phenomenological treatment.
To see this, consider the dependence of current I�V ,�� on
bias V and AB flux �. Assuming that there is a just one
harmonic in AB oscillations, we have

I�V,�� = I0�V� + I1�V�cos�� + ��V�� . �111�

With this notation, the visibility is

V =
���VI1�V��2 + �I1�V��V��V��2�1/2

��VI0�V��
. �112�

It is reasonable to expect quite generally that I1�V� increases
with V for small V, has a single maximum, and decreases
toward zero at large V, so that �VI1�V� has a single zero for
0�V��. If in addition the phase ��V� of AB oscillations is
independent of V �and only in this case�, the existence of a
single-side lobe in visibility follows.

The theoretical difficulty, then, is to understand the obser-
vation of multiple-side lobes. Calculations to date that gen-
erate such behavior can be divided into three categories. One
of these29 involves a plasmon resonance between one arm of
the MZI and a counterpropagating edge state at the boundary
of the Hall bar. Such a coupling of the MZI to another edge
state is not an essential part of the interferometer design and
in this sense the mechanism is not an intrinsic one. For that
reason, it seems unlikely to provide the explanation for ob-
servations in many different samples of varying designs. The
most important comparison is therefore between a second
category of explanation,30 which is based on coupling be-
tween the two channels existing at each edge for filling fac-
tor �=2, and the third category, which is formed by the cal-

culations that we have presented, together with earlier
approximate discussions32,33 of similar physics, and has been
worked out for a system at �=1.

According to the approach of Ref. 30, multiple-side lobes
should be found only at �=2, which seems indeed to be the
case experimentally. Some important discrepancies between
this theory and experiment remain, however. One is that,
within the approach of Ref. 30, the shape of the envelope of
the lobe pattern is controlled by the difference in interferom-
eter arm lengths: in particular, for an interferometer with
arms of equal length, visibility does not fall to zero at large
bias. This is in conflict with observations. It requires one to
assume30 that two separate physical processes are involved:
the process included in the theory, which leads to multiple
zeros in visibility at �=2, and another one, omitted from the
theory �such as dispersion of the edge modes�, which con-
trols decay of the envelope. Moreover, if this theory is
adopted at �=2, the existence of a single-side lobe at �=1
must be attributed to a separate dephasing mechanism, fol-
lowing Eq. �112�. In experiment, there appears to be a com-
mon voltage scale determining all aspects: the zeros in vis-
ibility at �=2, the envelope of the lobe pattern at either
filling factor, and the position of the visibility zero at �=1. It
would be a surprising coincidence if two separate mecha-
nisms were both to involve the same scale. An explanation of
multiple-side lobes in visibility based exclusively on disper-
sionless slow and fast edge modes at �=2 therefore seems
problematic. By contrast, the calculations we have presented
generate zeros of visibility and an overall decaying envelope
for visibility from a single mechanism. Depending on inter-
action strength we find either multiple-side lobes or only a
single prominent side lobe. The mechanism is essentially
plasmon dispersion. It is likely that a full understanding of
experiments will require a combination of both aspects—
dispersion and the existence of two modes at �=2. It is how-
ever, an important point of principle, demonstrated by the
calculations we have described, that multiple-side lobes are
not an exclusive consequence of coupling between a slow
and a fast mode at �=2.

A definite qualitative feature of our results is that exact
zeros of fringe visibility at certain values of bias voltage
appear only for an interferometer with equal length arms, in
which the transmission probability at the first QPC is tuned
precisely to the value one half. Changes in transmission
probability and �though to a much lesser extent, if interac-
tions are strong� arm length from these values convert exact
zeros to finite minima in visibility. Such sensitivity to trans-
mission probability has not been reported experimentally.
The reason it appears in our theory can be understood start-
ing from Eq. �112�: exact zeros of visibility can occur only if
the phase ��V� of AB oscillations is independent of bias V. A
phase independent of bias is ensured by symmetry for an
interferometer with L1=L2 and ta

2=1 /2. For other parameter
choices, our model, in which there are no interactions be-
tween electrons on opposite interferometer arms, yields a
bias-dependent ��V�, essentially because that Hartree poten-
tials for electrons on each arm vary differently with V. For
this reason, it would be interesting to generalize our treat-
ment to systems with interactions between edges as well as
within each edge. We expect that such interactions would
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reduce or eliminate the dependence of ��V� on V, giving near
or exact zeros of visibility even for ta

2�1 /2 or L1�L2, in
accord with experiment. Other possible generalizations in-
clude calculation of finite temperature effects and of noise
power.

ACKNOWLEDGMENTS

We thank V. V. Cheianov, F. H. L. Essler, Y. Gefen, D.
Mailly, F. Pierre, and P. Roche for fruitful discussions, and
acknowledge support from EPSRC under Grants No. EP/
D066379/1 and No. EP/D050952/1.

APPENDIX A: CALCULATION OF THE COMMUTATION
RELATIONS

We wish to show that the commutators �Ĥtun
a �t1� ,Ĥtun

b �t2��
and �Ĝ12�t1� ,Ĥtun

b �t2�� appearing in Sec. IV B are zero for
t1� t2. As a first step we obtain commutation relations for the
fermion fields appearing in Eq. �80� of Sec. IV F. To keep
notation concise, we define

�̂��z�� � �̂��d�,t� = e−i�−�
� Q��x−z���̂��x�dx�̂��z�� ,

where z�=d�−vFt. The kernel Q��z� is nonzero only for z
�−d�. This follows from causality �with interactions occur-
ring only inside the interferometer, the phase of an electron
at QPC b cannot be influenced by electrons that have yet to
enter the MZI� and can be demonstrated explicitly for the
case of charging interactions, using the analytic structure of
the phase shifts, Eq. �86�. We have

��̂��x�,�̂���x��� = 0, ��̂��x�,�̂��
+ �x��� = 0 �A1�

for any � , �� and x�−x�d�. From this we find

�Ĥtun
a �t1�,Ĥtun

b �t2��

= �vaei��̂1
+�− vFt1��̂2�− vFt1�

+ H.c.,vbei
�̂1
+�d1 − vFt2��̂2�d2 − vFt2� + H.c.� = 0

for t1� t2.

We also require the anticommutators of �̂��x� with itself

and with �̂�
+�x�. These are straightforward to obtain starting

from the bosonized form for the fermion operators. However,
it is instructive also to derive them directly from the repre-
sentation in Eq. �80�, as follows. We have

�̂��x��̂���x�� = − �̂���x���̂��x�

	 e−�Q̂�,Q̂���ei�Q��x�−x�−Q��x−x������,

where

�Q̂�,Q̂��� � 

−�

�

Q��z − x�Q���z� − x��

	 ��̂��z�, �̂���z���dzdz�.

Because of the presence of the filled Fermi sea, the density
operators do not commute.35 Instead

��̂��z�, �̂���y�� = −
i

2�
�z�z − y����.

From this

�Q̂�,Q̂��� =
i

2�



−�

�

dyQ�y − x���yQ�y − x� .

We now prove that

Q�x� − x� − Q�x − x�� =
1

2�



−�

+�

dyQ�y − x���yQ�y − x� .

Introducing the Fourier transform of the kernel we have

Q�x� − x� − Q�x − x�� =
 dqQ̃�q��eiq�x�−x� − eiq�x−x���

and

1

2�



−�

+�

dyQ�y − x���yQ�y − x� = i
 dqqQ̃�q�Q̃�− q�eiq�x�−x�.

Thus we wish to show

Q̃�q� − Q̃�− q� = iqQ̃�q�Q̃�− q� .

It is easy to check that this is the case, using the explicit form

Q̃�q� = 2��dj0
2�qd/2��1 + �e−iqd/2j0�qd/2��−1

for the kernel in the case of a charging interaction, where
j0�x�= �sin x� /x. This gives

��̂��x�,�̂���x��� = 0,

��̂��x�,�̂��
+ �x��� = ����x − x�� .

It follows directly that �Ĝ12�t� ,Ĥtun
b �t���=0 for t� t�.

APPENDIX B: CALCULATION OF THE S–MATRIX

We require an explicit form for the unitary transformation
of fermion operators generated by

Ŝa�t� = T exp�−
i

�



0

t

Ĥtun
a ���d�� . �B1�

The fermion operators appearing in Ĥtun
a commute with Ĥint

because their position coordinates are before the interacting
region. For this reason the interaction representation of

Ĥtun
a ��� has the simple form

Ĥtun
a ��� = vaei��̂1

+�− vF���2�− vF�� + H.c.

The Schrödinger operators �̂��−vF�� anticommute at differ-
ent values of their argument. As a consequence

�Ĥtun
a ���,Ĥtun

a ����� = 0

for any � , �� and the time ordering in Eq. �B1� can be
omitted.
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Defining

�̃̂��x,t� = Ŝa+�t��̂��x�Ŝa�t� �B2�

and using a Baker-Hausdorff formula

e−BAeB = 	
n=0

�
1

n!
�A,B�n = A + �A,B� +

1

2!
��A,B�,B� + ¯

we obtain

�̃̂��x,t� = � 	
�=1,2

S��
a �̂��x� − vFt � x � + 0

�̂��x� otherwise, � �B3�

where

Sa = � ra − itaei�

− itae−i� ra
� .

APPENDIX C: MATRIX ELEMENTS OF THE
EXPONENTIAL OPERATOR

Here we present a derivation of the equation which we
use to evaluate matrix elements of the form

Ckl � ���ĉk
+ei	

ij
Mijĉi

+ĉ jĉl�
 , �C1�

where the fermionic operators ĉi obey usual anticommutation
relations �ĉi , ĉj

+�=ij and �ĉi , ĉj�=0. The matrix Mij is Her-
mitian and so the exponential

Û = ei	
ij

Mijĉi
+ĉ j �C2�

is a unitary operator. The matrix elements Ckl are calculated
with respect to the states

�� = �m1,m2, . . . ,mN , �C3�

�
 = �n1,n2, . . . ,nN �C4�

with fermions occupying single-particle levels enumerated as
m1�m2 , . . . , �mN and n1�n2 , . . . , �nN correspondingly,
here N is a total number of electrons. We can write these
states as a product of creation operators acting on vacuum

�� = ĉmN

+ ĉmN−1

+ , . . . , ĉm1

+ �vac , �C5�

�
 = ĉnN

+ ĉnN−1

+ , . . . , ĉn1

+ �vac . �C6�

The matrix elements in Eq. �C1� can be written as

Ckl = �vac�ĉm1
ĉm2

, . . . , ĉmN
	 ĉk

+ÛĉlĉnN

+ ĉnN−1

+ . . . ĉn1

+ �vac

�C7�

or after commuting the operator ĉk
+ to the left and ĉl to the

right we obtain

Ckl = �− 1�p+q�vac�ĉm1
ĉm2

, . . . , ĉmp−1
ĉmp+1

, . . . , ĉmN

	 ÛĉnN

+ ĉnN−1

+ , . . . , ĉnq+1

+ ĉnq−1

+ , . . . , ĉn1

+ �vac , �C8�

where p and q are defined such that k=mp and l=nq. Now

using the unitarity of the Û matrix we can rewrite it as

Ckl = �− 1�p+q�vac�ĉm1
ĉm2

, . . . , ĉmp−1
ĉmp+1

, . . . , ĉmN

	 ÛĉnN

+ Û+ÛĉnN−1

+ Û+, . . . ,Ûĉnq+1

+ Û+Ûĉnq−1

+ Û+, . . . ,

	Ûĉn1

+ Û+Û�vac . �C9�

Using the fact that Û�vac= �vac we arrive at the equation

Ckl = �− 1�p+q�vac�ĉm1
ĉm2

, . . . , ĉmp−1
ĉmp+1

, . . . , ĉmN

	c̃nN

+ c̃nN−1

+ , . . . , c̃nq+1

+ c̃nq−1

+ , . . . , c̃n1

+ �vac , �C10�

where we defined c̃i
+= Ûĉi

+Û+. Applying the Baker-Hausdorff
identity we obtain

c̃i
+ = 	

n=0

�
in

n!
Mii1

T Mi1i2
T , . . . ,Min−1in

T ĉin
+ = 	

j=0

�

Uij
Tĉj

+, �C11�

where matrix U is defined as

U = exp�iM� . �C12�

Substituting Eq. �C11� into Eq. �C10� gives an equation for
the matrix elements

Akl = Dlk
−1 det D , �C13�

where matrix D is formed from the matrix elements Uij with
indices i and j spanning the occupied states m1 ,m2 , . . . ,mN
and n1 ,n2 , . . . ,nN correspondingly.

APPENDIX D: NUMERICAL EVALUATION
OF THE CORRELATORS

In this appendix we provide details of the numerical pro-
cedure, outlined in Sec. IV F, which we use at the final stage
of our calculations to evaluate the correlation functions from
Eq. �83�. We consider a system of length L with periodic
boundary conditions, which leads to momentum quantization
k=2�n /L, where n�Z. A cutoff is introduced on the number
of momentum eigenstates so that n� �−Nmax,Nmax�, where
Nmax is a positive integer with the total number of states
Ntot=2Nmax+1. The largest value of Nmax which we used in
the calculations in order to check the convergence was
�1000 although in most cases Nmax�500 was sufficient.
The numerical calculation can be divided into three steps.

Step I. We generate a matrix M with dimensions 2Ntot
	2Ntot, where the factor of 2 originates from the number of
electron channels in the problem. The structure of this matrix
is as follows. In the matrix element M�
 the indices � and 

denote channel and momentum of the creation and annihila-
tion operators in the kernel. We reserve even indices for the
first channel and odd for the second channel such that the
matrix element of the kernel operator between states k and k�
is represented by 2	2 block in the matrix M. The difference
q=k−k� gives the plasmon momentum q, which is substi-
tuted into Eq. �82� with the corresponding form of the plas-
mon phase shifts. These phase shifts are obtained from the
Eq. �82� in the case of charging interactions, Eq. �93� for
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exponential interactions and can be calculated numerically
using Bogoliubov equations for other interaction potentials
as, for example, we have done in Sec. V C for Coulomb
interactions. For the zero mode i.e., q=0 we use Eq. �53�.

We evaluate the kernel from Eq. �82� for every set of
k , k� for each channel �the kernels are different if arm
lengths are not equal�. Each 2	2 block with given k , k� is
multiplied by the 2	2 matrix S1�

a�S1

a or S2�

a�S2

a �according to

which channel it originates from�, where Sa is defined in the
Eq. �34�. The difference of the resulting matrices gives the
�k ,k�� block in the matrix M. From this matrix we calculate
H�exp�iM�, which we use in the next step.

Step II. Next we generate a matrix D with dimensions
Np	Np, where Np=Np

1 +Np
2 is the total number of particles in

both channels, and Np
� is the number in channel �. Conver-

gence was achieved in most of the cases for Np
1 �Np

2 �400.
In the initial state particles occupy momentum eigenstates
− 2�

L Nmax, . . . , 2�
L �−Nmax+Np

1,2�. To study voltage dependence
of the correlators we fix number of particles in one channel
such that the states �− 2�

L Nmax, . . . ,0� are occupied and we
vary the number of electrons in another channel. The matrix
D is obtained by taking matrix elements of H which corre-
spond to occupied momentum eigenstates in the initial state.

Step III. We calculate the determinant and the inverse of
the matrix D. Using this and Eq. �C13� we evaluate correla-
tors Gkk� in momentum space for every pair of momentum
indices. Correlators in real space are obtained by performing
a discrete Fourier transform of Gkk�.

1 Y. Ji, Y. C. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H.
Shtrikman, Nature �London� 422, 415 �2003�.

2 I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, and V. Umansky,
Phys. Rev. Lett. 96, 016804 �2006�.

3 P. Roulleau, F. Portier, D. C. Glattli, P. Roche, A. Cavanna, G.
Faini, U. Gennser, and D. Mailly, Phys. Rev. B 76, 161309�R�
�2007�.

4 L. V. Litvin, H.-P. Tranitz, W. Wegscheider, and C. Strunk, Phys.
Rev. B 75, 033315 �2007�.

5 I. Neder, M. Heiblum, D. Mahalu, and V. Umansky, Phys. Rev.
Lett. 98, 036803 �2007�.

6 I. Neder, F. Marquardt, M. Heiblum, D. Mahalu, and V. Uman-
sky, Nat. Phys. 3, 534 �2007�.

7 L. V. Litvin, A. Helzel, H.-P. Tranitz, W. Wegscheider, and C.
Strunk, Phys. Rev. B 78, 075303 �2008�.

8 P. Roulleau, F. Portier, D. C. Glattli, P. Roche, A. Cavanna, G.
Faini, U. Gennser, and D. Mailly, Phys. Rev. Lett. 100, 126802
�2008�.

9 E. Bieri, M. Weiss, O. Göktas, M. Hauser, C. Schönenberger,
and S. Oberholzer, Phys. Rev. B 79, 245324 �2009�.

10 P. Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini, U.
Gennser, and D. Mailly, Phys. Rev. Lett. 102, 236802 �2009�.

11 X. G. Wen, Phys. Rev. Lett. 64, 2206 �1990�; Phys. Rev. B 43,
11025 �1991�.

12 C. de C. Chamon, D. E. Freed, S. A. Kivelson, S. L. Sondhi, and
X. G. Wen, Phys. Rev. B 55, 2331 �1997�.

13 F. E. Camino, W. Zhou, and V. J. Goldman, Phys. Rev. B 72,
075342 �2005�; Phys. Rev. Lett. 95, 246802 �2005�.

14 T. Jonckheere, P. Devillard, A. Crepieux, and T. Martin, Phys.
Rev. B 72, 201305�R� �2005�.

15 K. T. Law, D. E. Feldman, and Y. Gefen, Phys. Rev. B 74,
045319 �2006�.

16 E. A. Kim, M. J. Lawler, S. Vishveshwara, and E. Fradkin, Phys.
Rev. B 74, 155324 �2006�.

17 D. E. Feldman and A. Kitaev, Phys. Rev. Lett. 97, 186803
�2006�.

18 V. V. Ponomarenko and D. V. Averin, Phys. Rev. Lett. 99,
066803 �2007�; Phys. Rev. B 79, 045303 �2009�; Z. Papic, N.

Regnault, and S. Das Sarma, Phys. Rev. B 80, 201303�R�
�2009�.

19 D. E. Feldman, Y. Gefen, A. Kitaev, K. T. Law, and A. Stern,
Phys. Rev. B 76, 085333 �2007�.

20 I. P. Levkivskyi, A. Boyarsky, J. Fröhlich, and E. V. Sukhorukov,
Phys. Rev. B 80, 045319 �2009�.

21 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abush-
Magder, U. Meirav, and M. A. Kastner, Nature �London� 391,
156 �1998�.

22 M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
Nature �London� 415, 39 �2002�.

23 G. Seelig and M. Büttiker, Phys. Rev. B 64, 245313 �2001�.
24 F. Marquardt and C. Bruder, Phys. Rev. Lett. 92, 056805 �2004�;

Phys. Rev. B 70, 125305 �2004�.
25 H. Förster, S. Pilgram, and M. Büttiker, Phys. Rev. B 72,

075301 �2005�.
26 V. S.-W. Chung, P. Samuelsson, and M. B. Büttiker, Phys. Rev.

B 72, 125320 �2005�.
27 F. Marquardt, Europhys. Lett. 72, 788 �2005�; Phys. Rev. B 74,

125319 �2006�.
28 J. T. Chalker, Y. Gefen, and M. Y. Veillette, Phys. Rev. B 76,

085320 �2007�.
29 E. V. Sukhorukov and V. V. Cheianov, Phys. Rev. Lett. 99,

156801 �2007�.
30 I. P. Levkivskyi and E. V. Sukhorukov, Phys. Rev. B 78, 045322

�2008�.
31 I. Neder and F. Marquardt, New J. Phys. 9, 112 �2007�.
32 I. Neder and E. Ginossar, Phys. Rev. Lett. 100, 196806 �2008�.
33 S.-C. Youn, H.-W. Lee, and H.-S. Sim, Phys. Rev. Lett. 100,

196807 �2008�.
34 D. L. Kovrizhin and J. T. Chalker, Phys. Rev. B 80, 161306�R�

�2009�.
35 See: J. von Delft and H. Schoeller, Ann. Phys. 7, 225 �1998�; T.

Giamarchi, Quantum Physics in One Dimension �Oxford Uni-
versity Press, Oxford, 2004�.

36 Y. Oreg and A. M. Finkelstein, Phys. Rev. Lett. 74, 3668 �1995�.
37 J. M. Luttinger, J. Math. Phys. 4, 1154 �1963�.
38 D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 �1965�.

MULTIPARTICLE INTERFERENCE IN ELECTRONIC… PHYSICAL REVIEW B 81, 155318 �2010�

155318-19

http://dx.doi.org/10.1038/nature01503
http://dx.doi.org/10.1103/PhysRevLett.96.016804
http://dx.doi.org/10.1103/PhysRevB.76.161309
http://dx.doi.org/10.1103/PhysRevB.76.161309
http://dx.doi.org/10.1103/PhysRevB.75.033315
http://dx.doi.org/10.1103/PhysRevB.75.033315
http://dx.doi.org/10.1103/PhysRevLett.98.036803
http://dx.doi.org/10.1103/PhysRevLett.98.036803
http://dx.doi.org/10.1038/nphys627
http://dx.doi.org/10.1103/PhysRevB.78.075303
http://dx.doi.org/10.1103/PhysRevLett.100.126802
http://dx.doi.org/10.1103/PhysRevLett.100.126802
http://dx.doi.org/10.1103/PhysRevB.79.245324
http://dx.doi.org/10.1103/PhysRevLett.102.236802
http://dx.doi.org/10.1103/PhysRevLett.64.2206
http://dx.doi.org/10.1103/PhysRevB.43.11025
http://dx.doi.org/10.1103/PhysRevB.43.11025
http://dx.doi.org/10.1103/PhysRevB.55.2331
http://dx.doi.org/10.1103/PhysRevB.72.075342
http://dx.doi.org/10.1103/PhysRevB.72.075342
http://dx.doi.org/10.1103/PhysRevLett.95.246802
http://dx.doi.org/10.1103/PhysRevB.72.201305
http://dx.doi.org/10.1103/PhysRevB.72.201305
http://dx.doi.org/10.1103/PhysRevB.74.045319
http://dx.doi.org/10.1103/PhysRevB.74.045319
http://dx.doi.org/10.1103/PhysRevB.74.155324
http://dx.doi.org/10.1103/PhysRevB.74.155324
http://dx.doi.org/10.1103/PhysRevLett.97.186803
http://dx.doi.org/10.1103/PhysRevLett.97.186803
http://dx.doi.org/10.1103/PhysRevLett.99.066803
http://dx.doi.org/10.1103/PhysRevLett.99.066803
http://dx.doi.org/10.1103/PhysRevB.79.045303
http://dx.doi.org/10.1103/PhysRevB.80.201303
http://dx.doi.org/10.1103/PhysRevB.80.201303
http://dx.doi.org/10.1103/PhysRevB.76.085333
http://dx.doi.org/10.1103/PhysRevB.80.045319
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevB.64.245313
http://dx.doi.org/10.1103/PhysRevLett.92.056805
http://dx.doi.org/10.1103/PhysRevB.70.125305
http://dx.doi.org/10.1103/PhysRevB.72.075301
http://dx.doi.org/10.1103/PhysRevB.72.075301
http://dx.doi.org/10.1103/PhysRevB.72.125320
http://dx.doi.org/10.1103/PhysRevB.72.125320
http://dx.doi.org/10.1209/epl/i2005-10310-1
http://dx.doi.org/10.1103/PhysRevB.74.125319
http://dx.doi.org/10.1103/PhysRevB.74.125319
http://dx.doi.org/10.1103/PhysRevB.76.085320
http://dx.doi.org/10.1103/PhysRevB.76.085320
http://dx.doi.org/10.1103/PhysRevLett.99.156801
http://dx.doi.org/10.1103/PhysRevLett.99.156801
http://dx.doi.org/10.1103/PhysRevB.78.045322
http://dx.doi.org/10.1103/PhysRevB.78.045322
http://dx.doi.org/10.1088/1367-2630/9/5/112
http://dx.doi.org/10.1103/PhysRevLett.100.196806
http://dx.doi.org/10.1103/PhysRevLett.100.196807
http://dx.doi.org/10.1103/PhysRevLett.100.196807
http://dx.doi.org/10.1103/PhysRevB.80.161306
http://dx.doi.org/10.1103/PhysRevB.80.161306
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
http://dx.doi.org/10.1103/PhysRevLett.74.3668
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704281

